Deep Learning各种资料网址
徐静
今天轻松写一点,給大家推荐一些Deep Learning的科普的学习资源(作为入门学习),希望对各位有帮助。
-
人工智能大数据与深度学习 公众号: weic2c
-
深度学习通俗易懂教程专栏 超智能体 - 知乎专栏:https://zhuanlan.zhihu.com/YJango
-
zouxy9的博客:Deep Learning(深度学习)学习笔记整理,一共八篇,是很基础的内容 http://blog.csdn.net/zouxy09/article/details/8775360/
-
有趣的机器学习:最简明入门指南 http://blog.jobbole.com/67616/
-
深度学习如何入门? http://www.zhihu.com/question/26006703
-
Residual Networks (2015 ICCV, ImageNet 图像分类Top1) 介绍一下2015 ImageNet中分类任务的冠军——MSRA何凯明团队的Residual Networks: http://blog.csdn.net/abcjennifer/article/details/50514124
-
Image Classification with Deep Learning常用模型 Image Vlassification常用的CNN模型,针对cifar-10(for 物体识别),mnist(for 字符识别)& ImageNet(for 物体识别)做一个model 总结 介绍了一下这些网络的结构: http://blog.csdn.net/abcjennifer/article/details/42493493
-
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection 论文讲解,Faster-rcnn中的proposal提取网络RPN由于特征图的粗糙,在小目标及大IOU阈值情况下的检测率低。论文提出了HyperNet,综合低层,中间层和高层特征获得了较高的recall率: http://blog.csdn.net/cv_family_z/article/details/51135025
-
有趣的机器学习:最简明入门指南: http://blog.jobbole.com/67616/
-
- 目标检测“A MultiPath Network for Object Detection” 对Fast-RCNN方法做了三个小的修改:(1)检测器能够访问多层特征,(2)foveal结构多尺度提取目标上下文信息,(3)在多个IOU下优化损失函数
- http://blog.csdn.net/cv_family_z/article/details/51159619
-
跟踪“Visual Tracking with Fully Convolutional Networks” 对VGG16特征分析: http://blog.csdn.net/cv_family_z/article/details/50748236
-
Going deeper with convolutions – Googlenet,22层的深度网络。充分利用了网络中的计算资源,通过增加网络的宽度及深度实现。 http://blog.csdn.net/cv_family_z/article/details/50603406
-
SSD: Single Shot MultiBox Detector 本文算是 Faster R-CNN, YOLO 算法的改进版吧,它将检测和分类融合到一起去了,对每个可能的检测框赋予一个类别的概率: http://blog.csdn.net/cv_family_z/article/details/50474679
-
Striving for Simplicity: The All Convolutional Net 全卷积网络: http://blog.csdn.net/cv_family_z/article/details/50403365
-
From Facial Parts Responses to Face Detection: A Deep Learning Approach 公开代码,用CNN进行人脸局部属性检测,然后各个部件综合起来得到人脸检测结果: http://blog.csdn.net/cv_family_z/article/details/50233481
-
论文提要 Deep Face Recognition,公开代码: http://blog.csdn.net/cv_family_z/article/details/49868979
-
DeepID-Net:multi-stage and deformable deep CNNs for object detection Rcnn改进: http://blog.csdn.net/cv_family_z/article/details/49588969
-
行人检测“Pedestrian Detection with Unsupervised Multi-Stage Feature Learning”: http://blog.csdn.net/cv_family_z/article/details/49276833
-
车型识别“Vehicle Type Classification Using a Semisupervised Convolutional Neural Network”: http://blog.csdn.net/cv_family_z/article/details/49154585
-
论文提要“Learning Deepface Representation”: http://blog.csdn.net/cv_family_z/article/details/48975027
-
论文提要“Taking a Deeper Look at Pedestrians”:
http://blog.csdn.net/cv_family_z/article/details/48053535 -
论文提要“Pedestrian Detection aided by Deep Learning Semantic Tasks”: http://blog.csdn.net/cv_family_z/article/details/47259677
-
如何简单形象又有趣地讲解神经网络是什么?: http://daily.zhihu.com/story/4424412
-
深度学习笔记1(卷积神经网络): http://blog.csdn.net/lu597203933/article/details/46575779
-
DeepLearnToolBox中CNN源码解析: http://blog.csdn.net/lu597203933/article/details/46576017
-
CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别: https://www.zhihu.com/question/34681168
-
针对Faster RCNN具体细节以及源码的解读之SmoothL1Loss层: http://blog.csdn.net/xyy19920105/article/details/50421225
-
归一化化定义: http://www.cnblogs.com/njustyxy/archive/2011/06/10/2077926.html
-
UFLDL中文教程: http://ufldl.stanford.edu/wiki/index.php/UFLDL教程
-
介绍:使用卷积神经网络的图像缩放: http://engineering.flipboard.com/2015/05/scaling-convnets/
-
基于Theano的深度学习(Deep Learning)框架Keras学习随笔-12-核心层: http://blog.csdn.net/niuwei22007/article/details/49277595
- 如何在Caffe中配置每一个层的结构: http://demo.netfoucs.com/danieljianfeng/article/details/42929283